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SUMMARY

Since the development of shock-capturing methods, the carbuncle phenomenon has been reported to be
a spurious solution produced by almost all currently available contact-preserving methods. The present
analysis indicates that the onset of carbuncle phenomenon is actually strongly related to the shock wave
numerical structure. A matrix-based stability analysis as well as Euler �nite volume computations are
compared to illustrate the importance of the internal shock structure to trigger the carbuncle phenomenon.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shock-capturing upwind methods developed since the 1980s can be classi�ed into two distinct
categories: 1. upwind methods which exactly preserve contact discontinuities (which might
be referred to as contact-preserving methods), 2. upwind methods which introduce spurious
di�usivity in the resolution of contact discontinuities. Schemes belonging to the second cat-
egory never produce the carbuncle phenomenon but are hardly suitable for Navier–Stokes
computations (e.g. Van Leer’s method, see Figure 3(a)) since they arti�cially broaden bound-
ary layer pro�les. On the other hand, schemes taken from the �rst category are attractive
for viscous computations but turn out to be sensitive to the carbuncle phenomenon at vari-
ous degrees [1, 2] with very few exceptions [3]. It has been recently observed [4] that the
internal shock structure is essential to trigger the carbuncle phenomenon. This is consistent
with former heuristic explanations for the onset of the carbuncle phenomenon [5] in which
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intermediate shock points play an important role to generate shock instabilities. In the same
way, Karni and �Cani�c [6] conclude on the in�uence of the numerical viscosity inside the
shock structure.
The purpose of the present paper is to investigate the exact in�uence of the internal shock

structure on the carbuncle phenomenon.

2. METHOD

A matrix-based stability analysis [4] has been used to study the occurrence of unstable modes
during the shock wave computation. The matrix stability analysis consists of examining the
temporal evolution of spatial perturbations of a steady solution prescribed as the initial �ow
condition. In compact form, the temporal evolution of initial perturbations �Wm satis�es

d
dt
(�Wm)= S · �Wm (1)

A shock instability will be detected if the stability matrix S has at least one eigenvalue whose
real part is positive. Matrix S contains all numerical �ux gradients at every cell interfaces
and also includes the e�ect of grid distorsion and boundary conditions. It should be noticed
that the present analysis is continuous in time. Consequently, it does not depend on the
time discretization. If an instability is detected, it would occur for any CFL number, even
arbitrary small. Results obtained from the matrix-based stability analysis are compared with
two-dimensional Euler computations, using a standard �nite volume method on structured grids
(Figure 3). All numerical methods are �rst order accurate in time and space since high-order
reconstruction techniques do not a�ect the onset of carbuncle solutions.

3. RESULTS

3.1. The normal steady shock wave problem

As a �rst test case, the analysis is conducted on the simple steady normal shock wave prob-
lem. First, a steady one-dimensional solution is obtained with a given upwind scheme. Then,
the one-dimensional solution is projected onto a two-dimensional Cartesian grid whose ver-
tical gridlines are aligned with the shock wave. The �rst step consists of analysing the ca-
pability of numerical �uxes to capture a one-dimensional steady shock wave. For standard
shock-capturing �nite volume methods, the computation of shock waves may require up to
three internal points. Within the contact-preserving schemes family, some schemes, such as
Godunov, Roe and HLLC, have at most one intermediate point while Osher’s method usu-
ally resolve steady shock waves with two internal points. In the special case of AUSM-M, a
unique internal point value is possible for a given upstream Mach number above a limit value:
M∞¿1:367. Finally, dissipative schemes usually produce two (e.g. Van Leer’s method) to
three internal points (such as Pullin’s EFM scheme). In the �nite volume method, the cell
that contains the shockwave has a state Wm which can be interpreted as an average between
upstream (W0) and downstream (W1) conservative state vectors

Wm=W0 + �x(W1 −W0) (2)
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Figure 1. 1D shock numerical structures—M0 = 2—primitive states ratios:
(a) Godunov, Roe, HLLC; and (b) Van Leer.

where �x is the shock position within the internal grid cell. It is observed that a simple
�nite volume average of conservative states using the shock position (Equation (2)) is not
preserved by any standard schemes. This means that an initially sharp shock wave located
at some intermediate position between the upstream cell and the downstream cell will not
remain steady but will move toward another intermediate state [7]. This observation appears
consistent with the conclusion of Arora and Roe [8] concerning the slowly moving shock
problem. Indeed, during the integration in time, the steady shock wave is the result of a
moving shock slowly converging to its �nal position. Further investigation is certainly needed
to establish a closer relationship between both problems. For Roe’s method, it has been
reported that the internal steady shock point belong to a Hugoniot curve [9] (Figure 1(a))
de�ned as

FH1 − F1 = uS1(WH1 −W1) (3)

It turns out that all states obtained from the Hugoniot curve based on the downstream state
are left unchanged by contact-preserving schemes which allow one-internal point in the com-
putation of shock waves, i.e. Godunov, Roe and HLLC schemes. The steady intermediate
states taken from the Hugoniot curve can be represented as an average between upstream and
downstream primitive states:

�H1 = �0 + ��(�1 − �0)

uH1 = u0 + �u(u1 − u0) (4)

pH1 = p0 + �p(p1 − p0)
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Figure 2. E�ect of shock numerical structure on 2D stability—Godunov, Roe, HLLC—25× 25 grid:
(a) stability of 2D steady shock; and (b) stability diagram.

where

�� = �x

�u = 1− (1− �x)
(
1 + �x

M 2
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1 + (�− 1)M 2
0 =2
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�− 1
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0

)−1=2

Any internal shock state can be represented by a set of three components (��; �u; �p) which
correspond to a point in the frame illustrated in Figure 1(a). During the integration process, any
initial intermediate state will converge towards a steady internal shock state which is located
along the Hugoniot curve. Thousands of intermediate states randomly chosen inside or outside
the cube represented in Figure 1(a) have been used as initial condition to compute a steady
shock solution. After convergence, all points have converged toward the Hugoniot curve.
For Van Leer’s method internal converged points belong to a di�erent curve, the upstream
internal point lay on the supersonic part and the downstream internal point on the subsonic
part of the curve (Figure 1(b)). Internal points being fully determined (through a single free
parameter), one can apply the matrix stability analysis to evaluate the e�ect of the internal
shock wave structure on the carbuncle phenomenon. This is done on a 25× 25 Cartesian grid
after projecting the steady 1D solution along the horizontal gridlines. For a given upstream
Mach number, it can be observed (Figure 2(a)) that there is a common critical point for
Godunov, Roe and HLLC schemes, above which the 2D shock remains stable. Furthermore,
a stability diagram (Figure 2(b)) illustrates that: 1. All 2D steady shock waves are stable
when the upstream Mach number is less than a value close to 2.0, 2. even for arbitrary
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high upstream Mach number, Godunov, Roe or HLLC methods can produce carbuncle-free
solutions, provided that the internal shock point is su�ciently close to the downstream state
(Figure 2(b)).

3.2. The blunt body problem

As a second test case, the supersonic blunt body problem is considered in order to illustrate
the importance of the numerical shock structure on the carbuncle phenomenon. The geometry
is a half-cylinder placed in a supersonic freestream �ow at Mach 10. The mesh has 80 cells
in the radial direction and 160 along the wall. Van Leer’s method is �rst used to obtain a
steady solution with the bow shock located at a certain stand-o� distance from the stagnation
point. Then, Roe’s method is applied using Van Leer’s solution as an initial condition to
observe the evolution of the shock structure. All computed solutions are double-precision
steady solutions in which time residuals have been decreased by 10 orders of magnitude. As
expected, Van Leer’s method produces a carbuncle-free solution (Figure 3(a)) while Roe’s
method produces the carbuncle phenomenon using the same mesh (Figure 3(b)). When Roe’s
method is used from Van Leer’s converged carbuncle-free solution, the shock wave structure
is resolved from two internal points to only one. The interesting observation is that depending
on the initial shock wave structure of Van Leer’s solution, Roe’s method can produce the
carbuncle or not. More precisely, a subcritical shock pro�le, in which the intermediate shock
point is closer to the downstream state does not produce the carbuncle (Figure 3(c)). Also,
a supercritical shock pro�le, in which the intermediate shock point is closer to the upstream
state does result in a carbuncle solution (Figure 3(d)). A Van Leer subcritical shock pro�le is

(a) (b) (c) (d)

Figure 3. E�ect of shock numerical structure on the carbuncle phenomenon—M∞=
10—density: (a) Van Leer; (b) Roe; (c) Van Leer subcritical shock pro�le + Roe; and

(d) Van Leer supercritical shock pro�le + Roe.
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Figure 4. Shock numerical structure along symmetry line (Y =0)—M∞=10.

observed when internal points are close to the downstream state (Figure 4). Finally, it should
be acknowledged that between the two results obtained with Roe’s method (Figure 3(c) and
(d)) a full range of solutions is available, in which the carbuncle phenomenon is more or less
visible. The present method based on Van Leer’s subcritical shock pro�le cannot be regarded
as a practical cure since it would require several ad hoc gridlines adaptation of the bow shock.

4. CONCLUSION

The present analysis provides a clue to explain why, in the blunt body problem, certain
grids lead to carbuncle solutions while others do not. Also, the e�ect of the internal shock
structure on shock instabilities indicates that one might cure the carbuncle phenomenon by
simply acting on the 1D form of the numerical �ux function without degrading the contact-
preserving property.
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